PS
Jan 7, 2023
I would highly recommend this course for someone who wants to get started into Deep Learning using TensorFlow. Do remember to work on some new projects after finishing this professional certificate.
AS
Mar 9, 2019
Good intro course, but google colab assignments need to be improved. And submitting a jupyter notebook was much more easier, why would I want to login to my google account to be a part of this course?
By zhenzhen w
•Nov 18, 2019
nice
By M n n
•Oct 10, 2019
Gr8!
By guike s
•Sep 26, 2019
good
By Jurassic
•Sep 6, 2019
good
By Rupsa R
•Jul 4, 2019
Good
By Nazarii N
•Jun 25, 2019
cool
By Dr S P
•Jun 20, 2019
good
By Sui X
•May 26, 2019
good
By Ankit K
•Apr 22, 2019
good
By Ashok R A
•Apr 3, 2019
Good
By Mohamed M
•Sep 30, 2020
<3
By Keshav B
•Jul 12, 2020
<3
By Srijeet C
•Mar 30, 2020
N
A
By Ming G
•Aug 16, 2019
gj
By Erazo M J S
•Nov 26, 2023
.
By Myungjin K
•Jul 28, 2021
By Anirban S A
•Jul 19, 2021
By Kismat K
•Apr 24, 2021
l
By Rubén M
•Aug 28, 2019
I
By Raman M
•Aug 4, 2019
i
By R H
•Sep 13, 2019
Great introduction to using Tensorflow to implement convolutional networks.
I took the Stanford course by Andrew Ng first, so many of the concepts were very familiar - in some cases, the detail was just a little bit shallow - probably to avoid interfering with getting on with implementation - but this course certainly had references outside the course to some more detailed information on topics like how convolutions help identify features or the learning factor.
The jupiter notebooks were great in that you don't need to worry about the environment much - it's already set up - a big worry for me for many of these types of courses. But there were quirks, and a few times I (and some of the other students) could get tripped up for a little while. If you are a developer like I used to be, then troubleshooting and debugging environment/code issues is a small hurdle though.
Kudos to the instructors and those that set up the course - this is otherwise very hard material to teach and set up good "hands on" evaluation, which they did really well, a couple kinks aside.
By César R P
•Aug 19, 2020
The course is a great introduction to the use of tensorflow. Keep in mind, this course is a practisioners guide to Deep Learning, so there's not much theory involved, you just get an intuition to how things work. I'd say this is a great start to the specialization, which I feel will probably compliment Andrew Ng's specialization greatly (that one delves into the theory, but the code you make isn't really what one would use in day to day ML projects).
The only thing I didn't like (why I docked a star) where the programming assignments. Too easy, and the autograder barely checks anything. You need to explore thigs by yoursefl and be disciplined, as the programming excercises let you get away with anything. That said, that seems like it only happens in this first course (maybe as a way to encourage people to keep moving forward), and the excercises get better in what I've seen of the next course.
All in all, great course. Mr Moroney is one of the best teachers I've ever see, and communicates his knowledge and pasion with great ease.
By narendra@live.com
•Oct 1, 2019
This is a great course with very useful lessons that helps the students feel confident about implementing Deep Learning solutions. It is a perfect follow up for Deep Learning Specialization which lays down the theoretical foundations. The instructor is great, and he talks about real world problems (not just Fashon MNIST but non centered, colored and large images) and explains them very clearly.
There is some amount of lack of attention to details in the course which manifest itself specially in the code (typos, code and code comments not agreeing with each other, and entire lessons which are slotted for 10 minutes or more but dont have any action other than pressing the "mark as complete" button, which makes you feel that you are missing something. Also the discussion board isnt as responsive (especially moderators) as the other Deeplearning.ai courses have been in the past.
By Ilya R
•Jul 31, 2020
I like Laurence's teaching style. This isn't the first his course I've taken. It's nice that he has some interesting datasets of his own and some research questions. But I have a couple of suggestions to this course.
First of all tensorflow documentation has a lot (and I mean A LOT) of good tutorials so I'd expect some of them to be included in the course. That what you can expect of Google's developer advocate to do. I really need some help in understanding those tutorials.
The second suggestion - the course is far too basic. That's probably OK but we really need a follow-up course to dig much deeper into tf.data.Datasets, image processing and custom metrics and losses as an example. It's really not enough background to really reproduce results from say AI for medicine courses that you may get from this series.